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Abstract

Multi-Agent Reinforcement Learning (MARL) has been proposed as a versatile tool
for approximating Nash Equilibria (NE) in games where traditional techniques fail.
In this study, we analyze the dynamic oligopoly model, a discrete-time game model
for price competition in oligopolies, in multiple Reinforcement Learning (RL) exper-
iments. We replicate the best response to the greedy strategy using Proximal Policy
Optimization (PPO). Further, we apply Independent Reinforcement Learning (IRL)
with PPO across diverse configurations. Our results highlight that a verified NE is
attainable in both symmetric and small asymmetric setups, even when the dynamics
are intricate. Surprisingly, in certain cases, identical agents adopt distinct strategies in
the largest setup. This study suggests the promising capabilities of MARL in finding
NE in complex games with continuous action spaces and multiple stages.
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Notation

• For a set A, let ∆(A) denote the set of probability distributions over A.

• For a probability distribution p ∈ ∆(A), let p(a) denote the probability of a ∈ A.

• For a probability distribution p ∈ ∆(A) and B ⊆ A, let p(B) denote the probability
of B under p, i.e. p(B) = ∑a∈B p(a).

• For a function f : X → ∆(Y), f (y|x) denotes the probability of y ∈ Y given the
input to f was x ∈ X.

• Given a quantity xa,b,... that is indexed by a set of indices a ∈ A, b ∈ B, ..., let x:,b,...
denote the vector (xa,b,...)a∈A. Similarly, let xa,:,... denote the vector (xa,b,...)b, and
so on. If multiple indices are omitted, the result is a tensor.

• Given a quantity xa,b,... that is indexed by a set of indices a ∈ A, b ∈ B, ..., let x−i,b,...
denote the vector (xa,b,...)a∈A\i, similar to the definition above.

• δa denotes the Dirac delta function at a, i.e. δa(x) = δ(x − a).

• For a random variable A, we write Ea∼A[ f (a)] for the expected value of f (A),
Va∼A[ f (a)] for the variance of f (A), and σa∼A( f (a)) for the standard deviation
of f (A).
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Nomenclature

Variable Description

Reinforcement Learning
S State space
A Action space
O Observation space
p : S × A → ∆(S) Transition function
r : S × A × S → R Reward function
σ : S → O Observation function
π : O → ∆(A) Policy
ρ0 ∈ ∆(S) Initial state distribution
γ ∈ (0, 1] Discount factor
τ = (s0, a0, r1, s1, a1, r2, s2, . . . ) Trajectory
s0(τ), a0(τ), r1(τ), st(τ), . . . Components of a trajectory
G(τ) = ∑∞

t=0 γtrt+1(τ) Return of a trajectory
Vπ(s) = Eτ∼π|s0=s[G(τ)] Value of a state given a policy
U(π) = Es0∼ρ0 [Vπ(s0)] Utility of a policy

Dynamic Oligopoly
n Number of firms / agents
N = {1, 2, ..., n} Set of firms / agents
T Number of rounds
t ∈ {1, 2, . . . , T} Round index
t̃ ≡ T − t + 1 ∈ {1, 2, . . . , T} Number of rounds remaining
ci Production cost of firm i
Ci, ci ∼ Ci Distribution of production cost of firm i
pi

t ∈ [ci, Di
t] Price of firm i in round t

∆pi
t ≡ pi

t − 1
n ∑j∈N pj

t Price difference of firm i at round t
Di

t, Di
t+1 ≡ Di

t − ∆pi
t Demand of firm i in round t

Di ∈ ∆(R+), Di
1 ∼ Di Distribution of initial demand of firm i

xi
t ≡ Di

t − pi
t Sold quantity of firm i at round t

ri
t ≡ (pi

t − ci)xi
t Profit of firm i at round t

x



Nomenclature

Ui ≡ ∑T
t=1 ρt−1ri

t Discounted pay-off of firm i
Ui,t ≡ ∑T

t′=t ρt′−1ri
t′ Discounted pay-off of firm i from round t

Ri
t ≡ Di

t − ci Relative demand potential of firm i at round t
λi

t̃ ∈ [0, 1], pi
t = ci + λi

t̃R
i
t Price indicator for agent i for t̃ rounds remain-

ing
λ:

: Strategy profile
Ui(λ

:
:) Discounted pay-off of firm i given strategy pro-

file λ:
:

xi



1. Introduction

Machine learning has seen tremendous progress in recent years, being praised as the
future of our economy. While large language models finally reached the mainstream
consumer market, the applications of machine learning go far beyond that, including the
fields of computer vision, robotics, health care, and finance. In the latter, Reinforcement
Learning (RL) has recently proven to be competitive against more traditional approaches
by making use of the vast amounts of data available in the financial sector [1].

Game theory, on the other hand, is a far more established field of research that
allows making rigorous statements about the interaction of multiple agents. Since the
rigorousness of game theory is appealing in financial setups, it has been adopted widely
in the field, with the most prominent example being auction theory [2], [3]. However,
progress has been limited by the fact that often, none but the simplest financial models
can be solved analytically, and even numerical methods are often infeasible.

Multi-Agent Reinforcement Learning (MARL) has been proposed as a versatile tool
to overcome this limitation. Studies suggest that when multiple agents engage in
simultaneous strategy learning, they often converge to a Nash Equilibrium (NE) [4].

We turn our attention to the dynamic oligopoly model as described by Bylka, Am-
broszkiewicz, and Komar [5]. This discrete-time sequential game, which is based
on price competition in an oligopoly, is sufficiently expressive to capture real-world
phenomena. While simple versions of the model allow for clear analytical interpre-
tation, more nuanced scenarios remain largely unexplored. Traditional methods find
themselves limited, especially when faced with the game’s continuous action and
observation spaces, as well as its deep sequential characteristics. However, adapting
this model into a MARL problem appears promising.

In our research, we undertake several RL experiments on the dynamic oligopoly
environment to answer the following research questions:

• With which proximity can we reaffirm analytical results from both the original
paper and our own work?

• Which novel insights can we gain from our experiments with verification?

• How do larger setups behave qualitatively?

We begin by giving an overview of work related to equilibrium computation. Then,
we introduce the basics of game theory, RL, and equilibrium learning through IRL. The

1



1. Introduction

dynamic oligopoly model, including the most significant analytical results, is presented
next. Moving on, we describe the methodology of our experiments, followed by the
results and an analysis thereof. We conclude with a summary of our findings and an
outlook on future work.

2



2. Related Work

The quest for predicting game outcomes often pivots around the concept of a NE [6,
Chapter 2.2]. Consequently, determining NE of various games has attracted significant
research attention, yielding varied outcomes.

For discrete action space, normal-form games, identifying NE is computationally
hard [7, Theorem 4.2.1]. However, when restricted to two-player zero-sum games,
NE can be determined in polynomial time using linear programming [7, Chapter
4.1]. In perfect information extensive-form games, backward induction allows for
NE identification in linear time w.r.t. the game tree size, as discussed in [7, Chapter
5.1.4]. Additionally, Bayesian normal-form games can be transformed into their perfect-
information counterparts, thus inheriting the same solution methods [6, Definition
26.1]. Nonetheless, general-sum Bayesian extensive-form games demand exponential
runtime in the worst case [7, Chapter 5.2.3].

Auction theory, a subset of game theory, offers profound insights into Bayesian
games with infinite state and action spaces. While analytical solutions for first- and
second-price sealed-bid auctions are well-understood territories [3], more intricate
scenarios proved to be elusive. For instance, asymmetric first-price auctions boil down
to a set of numerically challenging partial differential equations [8].

The fusion of machine learning and game theory has facilitated novel methodologies
for identifying Nash Equilibria (NE). Initially devised for solving Markov Decision
Processes (MDPs), RL was later explored for NE approximation by letting multiple
agents simultaneously optimize their reward independently, therefore called Indepen-
dent Reinforcement Learning (IRL) [9]. In a particular setting studied, many games
demonstrated strategy profile convergence to a NE while some showed cyclic or even
chaotic behaviors. Notably, distinct criteria under which Q-Learning would converge
to a NE in this scenario were derived [4]. In recent work, Bichler, Fichtl, Heidekrüger,
et al. [10] presented Neural Pseudogradient Ascent, a learning algorithm designed
for identifying Bayes Nash Equilibria (BNE) in single-stage auctions with continuous
observation and action domains.

RL has achieved major advances in various applications, including multi-stage
situations with continuous actions and observations [11], [12]. This prompts the
research community to question its applicability in multi-agent contexts.

3



3. Preliminaries

3.1. Game Theory

Game theory uses mathematical models to understand how rational players make
strategic decisions. In this study, we use game theory concepts to describe and analyze
how agents behave in a Multi-Agent Reinforcement Learning environment. In this
section, we highlight the key game theory ideas that are relevant to our work. For a
comprehensive grasp of game theory, Osborne and Rubinstein [6] serves as a valuable
resource.

3.1.1. Normal-Form Games

Game theory examines different types of games, and a prominent category among
them is the normal form or strategic game. In such games, each player selects an action
from their available choices, unaware of the choices made by others. Once every player
has made their decision, the game concludes, and players are rewarded based on the
collective actions taken.

Osborne and Rubinstein [6, chapter 2.1] define a normal form game as follows:

Definition 1 (Normal-Form Game) A strategic game consists of

• a finite set N (the set of players),

• for each player i ∈ N , a nonempty set Ai (the set of actions available to player i), where
A = ×i∈N Ai is the set of action profiles or strategy profiles,

• for each player i ∈ N , a utility function Ui : A → R, which the player tries to maximize.

Two-player normal-form games can often be visualized using a payoff matrix. Take
the game "Chicken" as described in [6, Example 16.3] for example. Imagine two players,
Alice and Bob, driving head-on towards each other. They each face a choice: keep
driving straight or swerve to avoid a collision. If one swerves while the other drives
straight, the one who swerves (dubbed the "chicken") loses, earning a utility of −1.
The straight driver triumphs with a utility of 1. Should both decide to swerve, both
receive a utility of 0 — no collision occurs, but neither emerges as dominant. If both
stay their course, disaster strikes, resulting in a collision and a utility of −10 for both.

4



3. Preliminaries

This scenario is captured in Table 3.1, with each cell’s first entry showing Alice’s utility
and the second showcasing Bob’s.

Bob
Alice Straight Swerve

Straight -10, -10 1, -1
Swerve -1, 1 0, 0

Table 3.1.: Payoff matrix for the game "Chicken".

3.1.2. Mixed Strategies

The foundational idea discussed earlier presumes that players pick only one action. Yet,
in many scenarios, it’s more appropriate to think that players select from a range of
actions based on certain probabilities. We term such a probabilistic approach a mixed
strategy. Building on the standard normal-form game (N , A:, U:), we can incorporate
mixed strategies as described below [6, Chapter 3.1.1]:

• Player i selects a strategy through a probability distribution, denoted as πi. This
belongs to ∆(Ai) ≡ Πi, which represents the set of strategies or probability
distributions for the potential actions for player i, Ai.

• The players’ utility function Ui is extended by the expected value of the utilities
of the pure outcomes i.e. Ui(π:) = Ea:∼π: [Ui(a:)].

3.1.3. Best Responses

Let’s focus on player i and look at the strategies chosen by other participants, symbol-
ized by π−i. When we talk about a best response, we’re referring to a strategy, πi, that
yields the highest utility for player i against the other players’ strategies. Mathematically,
this is given by [6, Chapter 2.2]:

Ui(πi, π−i) ≥ Ui(π
′
i , π−i) ∀π′

i ∈ Πi (3.1)

3.1.4. Nash Equilibria

One primary concern in game theory is anticipating the strategies that players might
adopt. Among several methods, the concept of a Nash Equilibrium (NE) stands out. At a
NE, no player can get a better outcome by deviating from their strategy. More formally,

5



3. Preliminaries

a Nash Equilibrium (NE) occurs when every player’s strategy is the best response to
the other players’ strategies [6, Chapter 2.2]:

Ui(πi, π−i) ≥ Ui(π
′
i , π−i) ∀i ∈ N , ∀π′

i ∈ Πi (3.2)

Using the earlier "Chicken" game as a reference, two distinct pure NE arise: One
where player A swerves and player B drives straight and another where player A drives
straight while player B swerves. Notably, despite the game’s symmetric structure, its
equilibria are asymmetric.

3.1.5. ϵ-Nash Equilibria

In certain scenarios, finding a strategy profile where players can’t notably benefit from
slight deviations might suffice. Specifically, Shoham and Leyton-Brown [7, chapter
3.4.7] detail an ϵ-Nash equilibrium as:

Definition 2 (ϵ-Nash equilibrium) Given an ϵ > 0, a strategy profile π: qualifies as an
ϵ-Nash equilibrium if

Ui(πi, π−i) ≥ Ui(π
′
i , π−i)− ϵ ∀i ∈ N , ∀π′

i ∈ Πi

3.2. Reinforcement Learning

Game theory provides the foundation for the problem at hand, but our approach
to solving it is rooted in Reinforcement Learning (RL). This section sheds light on
the optimization challenge RL is meant to address, specifically the Markov Decision
Process (MDP), and delves into the category of RL algorithms we use that facilitate this
solution.

3.2.1. Markov Decision Processes

At its core, RL serves as an optimization mechanism for problems described by a Markov
Decision Process (MDP). MDPs involve an agent navigating through an environment in
a series of steps, each time aiming to optimize its reward.

To be more precise, consider an agent that, at every moment t, chooses an action
at ∈ A based on its observation ot ∈ O of the current state st ∈ S. The environment then
draws from a probability distribution p : S × A → ∆(S) the next state st+1 ∼ p(st, at),
returning a reward rt = r(st, at, st+1) to the agent [11, Chapter 3.1].

The agent’s decision-making is modeled by a policy π : O → ∆(A). If presented
with an observation o = σ(s) of a state s, the policy π will choose an action a with
probability π(a|o).

6



3. Preliminaries

Iterating through this sequence of selecting actions and transitioning to ensuing
states produces a trajectory defined as τ = (s0, a0, r1, s1, a1, r2, s2, a2, r3, . . . ), an ordered
compilation of states, actions, and respective rewards. This dynamic is visualized in
Algorithm 1.

An agent’s overarching mission is to maximize the cumulative discounted rewards,
defined as the return Gt:

Gt =
∞

∑
k=0

γkrt+k+1 (3.3)

We may also denote the return of a trajectory τ as G(τ). Using p and π, we can
compute the probability of a trajectory τ given an initial state s. We write this as
τ ∼ π | st = s, with the dependency of the trajectory on p being omitted.

Algorithm 1 Definition of the partially observable MDP. If the observation function σ

is the identity function, the MDP is fully observable.
Require:

State space S
Action space A
Observation space O
Transition function p : S × A → ∆(S)
Reward function r : S × A × S → R

Observation function σ : S → O
Policy π : O → ∆(A)

Initial state distribution ρ0 ∈ ∆(S)
Discount factor γ ∈ (0, 1]

Initialize s0 ∼ ρ0

Initialize trajectory τ = (s0)

for t = 0, 1, 2, . . . do
The agent observes ot = σ(st)

The agent chooses an action at ∼ π(ot)

The state transitions to st+1 ∼ p(st, at)

The agent receives reward rt+1 = r(st, at, st+1)

τ = τ ∪ (at, rt+1, st+1)

end for
Reward the agent with G = ∑t γt · rt

In the presented definition, the process continues indefinitely, and the discount factor
γ ensures reward remains bounded [11, Equation 3.10]. However, in practice, it is

7



3. Preliminaries

common to focus on episodic MDPs, where the iteration concludes after a set count, T, of
steps. For consistency in notation, we describe an episodic MDP as follows, referencing
Sutton and Barto [11, chapter 3.4]:

Definition 3 (Episodic MDP) An episodic MDP with T steps is a MDP wherein after T
steps, the state transitions to a designated terminal state, sT, and all subsequent rewards post
this transition are zero.

3.2.2. The Reinforcement Learning Problem

The value of a state s given a policy π is defined as [11, Equation 3.12]:

Vπ(s) = Eτ∼π|s0=s[G(τ)] (3.4)

Similarly, we can define the action-value function Qπ(s, a) as the expected return when
starting in state s, taking action a and then following policy π [11, Equation 3.13]:

Qπ(s, a) = Eτ∼π|s0=s,a0=a[G(τ)] (3.5)

In RL, we aim to find a policy π∗ that maximizes the expected return for all states
s ∈ S:

π∗ = argmax
π

Vπ(s) (3.6)

In this formulation, we have a criterion for optimality for every possible initial state,
which may be inconvenient. The initial state is sampled from a probability distribution
ρ0 ∈ ∆(S), allowing us to define an overall performance coefficient or utility U(π) as [11,
Equation 13.4]:

U(π) = Es0∼ρ0 [Vπ(s0)]. (3.7)

The RL problem then becomes:

π∗ = argmax
π

U(π) (3.8)

3.2.3. Policy gradient methods

There is a variety of RL algorithms, each with their strengths and weaknesses, see
Sutton and Barto [11]. For the dynamic oligopoly environment, we require continuous
action- and observation spaces, ruling out Deep Q Networks. Therefore, we choose
Proximal Policy Optimization (PPO) [12] as our central RL procedure, which is a
well-established actor-critic algorithm.

8



3. Preliminaries

Actor-Critic Methods

These methods simultaneously try to approximate the optimal policy π∗ and the policy
value function Vπ through interaction of the policy with the environment, making
them model-free on-policy algorithms. Both the policy and the value function are
approximated by a neural network, parameterizing the policy πθ and the value function
Vϕ respectively. While only the policy is needed for the agent’s decision-making, the
value function helps in the training process. On a high level, the agent repeatedly
interacts with the environment using its current policy πθ and collects trajectories τ of
states, actions, and rewards. These trajectories are then used to update the policy to
make above-average-performing actions with a high advantage Ât, as estimated using
the value function, more likely [11, Chapter 13.5]. Finally, the value function is updated
to better approximate the true value function Vπθ

. This procedure is repeated until
convergence. Achiam [13, Vanilla Policy Gradient] describe the most basic actor-critic
algorithm, the Vanilla Policy Gradient algorithm as in Algorithm 2.

Advantage Estimation

The advantage of an action at, Ât, is an estimate for how good the performance of at

is compared to the average performance of the policy πθ . Ideally, we would like Â
to be the difference between the value of the action at and the value of the average
action, i.e. Ât = qπθ

(st, at)− Vπθ
(st). However, since we do not know the true value

function, we have to estimate the advantage. Here we have to make a trade-off between
the stability of the algorithm and the bias introduced by inaccurate value functions
[14, Section 2]. Schulman, Moritz, Levine, et al. [14] introduce Generalized Advantage
Estimation (GAE), which allows to configure the bias-variance trade-off by a single
parameter λ ∈ [0, 1]. The GAE advantage estimate ÂGAE(λ)

t is defined as follows:

ÂGAE(λ)
t =

∞

∑
l=0

(γλ)lδt+l (3.9)

with δt = rt + γVπθ
(st+1)− Vπθ

(st) being the temporal difference error. The parameter
λ controls the bias-variance trade-off. For λ = 1, the advantage estimate is unbiased
but has high variance, while for λ = 0, the advantage estimate has low variance but is
biased.

Proximal Policy Optimization

Schulman, Wolski, Dhariwal, et al. [12] propose Proximal Policy Optimization (PPO),
which is a refinement of the Vanilla Policy Gradient algorithm. It uses a clipped

9



3. Preliminaries

Algorithm 2 Pseudocode for the Vanilla Policy Gradient algorithm by Achiam [13,
Vanilla Policy Gradient]
Require:

Initial policy parameters θ0

Initial value function parameters ϕ0

MDP environment

for k = 0, 1, 2, ... do
Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environ-

ment.
Compute rewards-to-go R̂t.
Compute advantage estimates, Ât (using any method of advantage estimation)

based on the current value function Vϕk .
Estimate policy gradient as

ĝk =
1

|Dk| ∑
τ∈Dk

T

∑
t=0

∇θ log πθ(at|st)|θk
Ât.

Compute policy update, either using standard gradient ascent,

θk+1 = θk + αk ĝk,

or via another gradient ascent algorithm like Adam.
Fit value function by regression on mean-squared error:

ϕk+1 = arg min
ϕ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(
Vϕ(st)− R̂t

)2 ,

typically via some gradient descent algorithm.
end for

10



3. Preliminaries

surrogate objective to prevent the policy from changing too much between updates.
PPO is observed to significantly increase stability and performance compared to the
Vanilla Policy Gradient algorithm [12, Conclusion].

Partial observability

The majority of RL algorithms operate under the presumption that the agent has
complete visibility into the state s rather than relying on a partial observation, denoted
as o = σ(s). Therefore, partial observability breaks most convergence guarantees and
should be kept in mind as a potential source of problems.

As a solution, techniques such as merging past actions and observations into an
enhanced "super observation" or enabling the agent to accumulate an internal state via
recurrent neural networks are now in play [15].

3.3. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) takes the principles of single-agent RL a
step further, enabling multiple agents to simultaneously engage with the environment.
In this section, we’ll delve into the foundational concepts of the MARL framework.

3.3.1. Markov games

Markov games, also known as Stochastic Games, adapt MDPs to accommodate multiple
agents. Contrary to the setup presented by [7, Chapter 6.2], we define these games
with the capability to encompass infinite state-, action-, and observation spaces, as
illustrated in Algorithm 3.

Again, we define the value of a state given a strategy profile π: for player i as

Vi,π:(s) = Eτ∼π:|s0=s[Gi(τ)] (3.10)

and the reward or utility of agent i as

Ui(π:) = Es0∼ρ0 [Vi,π:(s0)]. (3.11)

We define an episodic Markov game in analogy to Definition 3.
Note that the agents’ policies are independent of each other, given the observations,

which is called a behavior strategy [7, Chapter 5.2.2].
It’s often reasonable to assume that all agents retain a memory of the game’s his-

tory—encompassing all its actions and observations. This assumption is termed perfect
recall [7, Definition 5.2.3]. Although standard Markov games don’t inherently possess
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Algorithm 3 Definition of a Markov game. The game is partially observable if the
observation function σi is not the identity function.
Require:

Set of agents N
State space S
Action space A = ×i∈N Ai
Observation space O = ×i∈NOi
Transition function p : S × A → ∆(S)
Reward function r : S × A × S → ×i∈N R

Observation function σi : S → Oi for each agent i ∈ N
Policy πi : Oi → ∆(Ai) for each agent i ∈ N , where Πi is the set of all policies for
agent i
Initial state distribution ρ0 ∈ ∆(S)
Discount factor γ ∈ (0, 1]

Initialize s0 ∼ ρ0

Initialize trajectory τ = (s0)

for t = 0, 1, 2, . . . do
Each agent observes oi

t = σi(st)

Each agent chooses an action ai
t ∼ πi(oi

t)

The state transitions to st+1 ∼ p(st, a:
t)

Each agent receives reward ri
t+1 = r(st, a:

t, st+1)

τ = τ ∪ (a:
t, r:

t+1, st+1)

end for
Reward agent i with Gi = ∑t γt · ri

t

perfect recall, given that agents are limited to observing the current state, we can
conceptualize a version of Markov games that embodies perfect recall:

Definition 4 (Markov game with Perfect Recall) Building upon the foundation of a Markov
game, a Markov game with perfect recall retains the core structure of the original game but
modifies the observation space. Specifically, the space O is supplanted by an extended observation
space, represented as Ôt = O ××t−1

τ=0A ××t−1
τ=0O at the time instance t. Consequently, the

observation function σi is adapted to account for the accumulated history of observations and
actions:

ôi
t = σ̂i(τ) = (σi(st), ai

0, ai
1, . . . , ai

t−1, σi(s0), σi(s1), . . . , σi(st−1)). (3.12)

This conceptual framework can be practically realized via methods delineated in
Section 3.2.3, such as facilitating agents with the capability to maintain a recurrent
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state.
In games with perfect recall, there is no loss in generality by restricting the policies

to behavior strategies [7, Theorem 5.2.4].
Note that a Markov game where the strategies of all agents except one are fixed is a

MDP for the remaining agent, which we call the MDP corresponding to the Markov game
with π−i.

3.3.2. The Multi Agent Reinforcement Learning Problem

In MARL, defining the objective of the learning process becomes more intricate com-
pared to the straightforward goal in single-agent RL. One approach might be to focus
on maximizing the combined returns of all agents, termed social welfare. This essentially
reframes the multi-agent setup into a single-agent problem: a central entity assumes
the role of all agents, optimizing their collective rewards by playing simultaneously [16,
Chapter 5.3.1].

However, it is not always a sensible assumption that all agents are controlled by an
altruistic dictator. For a more realistic view of the world, we are looking for a set of
policies where each agent maximizes their individual return, given the other agents’
policies, in other words, a NE:

Definition 5 (Nash Equilibrium of a Markov game) A strategy profile π∗
: is a Nash

equilibrium of a Markov game if for all agents i ∈ N and all strategies πi ∈ Πi

Ui(π
∗
i , π∗

−i) ≥ Ui(πi, π∗
−i). (3.13)

One category of algorithms, Independent Reinforcement Learning (IRL), achieves
this equilibrium by having each agent adopt a single-agent learning mechanism inde-
pendently, effectively treating other agents as facets of their environment [16, Chapter
5.3.2].

The foundational premise is simple yet profound: if every agent can flawlessly
optimize their objectives (refer to Equation (3.8)), then the resulting strategy profile
must be a NE.

Given that the agents will in all likelihood not be able to perfectly optimize their
objectives, several performance metrics for IRL algorithms have been proposed:

• Convergence of expected return: How close does the expected return of each
agent come to that of the Nash equilibrium? [16, Equation 5.4]

• Convergence of empirical action distribution: How close does the policy learned
by each agent come to the Nash policy in terms of observation-action-pairs? [16,
Equation 5.5]
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• Convergence to an ϵ-NE: What is the maximum utility ϵ an agent loses compared
to its best response?

3.3.3. Challenges in Multi-Agent Reinforcement Learning

It is observed that for some games, IRL simply does not converge to a NE. Several
challenges have been identified:

• Non-stationarity of the environment In IRL, each agent assumes that the other
agents’ policies are fixed, but in reality, they are also learning. This means
that the environment is constantly changing, which breaks the assumptions for
the convergence of single agent RL algorithms, sometimes resulting in cyclic
dynamics [17, Chapter 3.2].

• Equilibrium Selection Games often have multiple NE [6, Chapter 2.3], posing
the additional challenge of coordinating to an equilibrium.

• Scaling to Many Agents An increase in the number of agents may not only in-
crease resource requirements significantly but also aggravate the non-stationarity
of the environment [17, Chapter 3.3].

3.4. Brute-force Verifying Best Responses

Given a Markov game and a strategy profile π:, we can estimate the value of the
best response of an agent, U∗

i (π−i) = maxπ′
i
Ui(π

′
i , π−i) to π−i by discretizing the

action- and observation spaces and building up the full game tree. The value of this
estimate may differ from its actual value in both directions since the verifier and the RL
algorithm do not optimize over the same set of strategies.

The value may be underestimated if the discretization is too coarse and the highest-
paying discretized strategy differs too much from the actual best response. It may on
the other hand also be overestimated since by building up the game tree, the verifier
strategies have perfect recall while the RL agent does not.
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4.1. Definition

Bylka, Ambroszkiewicz, and Komar [5] propose the market model that is to be inves-
tigated in this work. It is a discrete-time oligopolistic price competition model that
encapsulates the interactions among n firms or agents over T time periods. Each firm
aims to maximize its profit by strategically determining the price of its product at every
time step. The model is characterized by the procedure described in Algorithm 4.

Algorithm 4 Process of the dynamic oligopoly game as in Bylka, Ambroszkiewicz, and
Komar [5].
Require:

Number of agents n
Number of rounds T
Discount factor γ ∈ (0, 1]
Initial demands Di

1 for each agent i ∈ N = {1, 2, . . . , n}
Production costs per unit ci for each agent i ∈ N

for t = 1, 2, . . . , T do
t̃ = T + 1 − t
Compute relative demand potentials as Ri

t = Di
t − ci

Each agent i chooses its price pi
t = λi

t̃ · Ri
t + ci ∈ [ci, Di

t]

For each agent i compute the quantity sold as xi
t = Di

t − pi
t

For each agent i compute the profit as ri
t = (pi

t − ci)xi
t = λi

t̃ · (1 − λi
t̃) · (Ri

t)
2

Compute the average price as p̄t =
1
n ∑j∈N pj

t
For each agent i compute the price difference ∆pi

t = pi
t − p̄t

The demands transition to Di
t+1 = Di

t − ∆pi
t

Each agent i drops out of the market if Di
t+1 ≤ ci

The remaining agents’ demands are normalized, keeping total demand constant
end for
Reward each agent i with Ui = ∑T

t=1 γt−1ri
t

The key assumptions are as follows:
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4. Dynamic Oligopoly

• Firms: The agents represent firms that sell a uniform product. Customers make
purchase decisions based purely on price.

• Production Cost: Each firm has a consistent production cost, denoted by ci, per
unit.

• Demand Potential: Each firm has a demand potential, Di
t, representing the

maximum number of customers inclined to purchase from that firm at time t.

• Sales and Price: A firm’s sales volume x is inversely proportional to its price,
given by xi

t = Di
t − pi

t. For round t, the profit for firm i is ri
t = (pi

t − ci) · xi
t.

• Customer Migration: Customers gravitate towards firms with competitive prices,
reducing the demand potential for higher-priced firms in subsequent rounds.
This is reflected in the equation Di

t+1 = Di
t − ∆pi

t, where ∆pi
t signifies the price

difference between firm i and the average price across all firms during round t.

• Firm Removal: Firms that can’t operate profitably are eliminated. Their market
presence is proportionally divided among the remaining firms. This occurs when
Di

t ≤ ci, as implied by xi
t = Di

t − pi
t ≥ 0 and pi

t ≥ ci.

The relative demand potential for firm i in round t is Ri
t = Di

t − ci. This value
signifies the size of the potential price range a firm might establish. A parameter called
the price inidicator λi

t̃ ∈ [0, 1] is introduced, where λi
t̃ = 0 signifies the minimal price ci,

and λi
t̃ = 1 represents the maximum price Di

t. The pricing rule for round t for firm i is
thus pi

t = ci + λi
t̃R

i
t, where t̃ = T + 1 − t is the number of rounds remaining.

Firms must balance short-term and long-term gains. A short-term boost in profits
by raising prices may result in a long-term profit decline due to diminishing market
share.

4.2. Phrasing the model as a Markov game

To apply RL to the dynamic oligopoly, we formulate it as a Markov game.

Definition 6 (Markov game formulation of the dynamic oligopoly) A tuple

(n, T, γ, D:, C:, α:, Ω:)

is a dynamic oligopoly with n agents, T rounds, discount factor γ, and for each agent i ∈ N an
initial demand distribution Di ∈ ∆(R+), a production costs distribution of Ci ∈ ∆(R+), action
parameterization αi ∈ {λ, p}, and observations Ωi ⊂ {t̃ = 1, t̃, Di

t, D:
t, ci, c:}. It corresponds

to the episodic Markov game (N , S, A:, O:, p, r:, σ:, ρ0, γ) with the following variables:

• N = {1, 2, . . . , n} is the set of agents.
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• T is the number of rounds of an episode.

• S = Rn ×Rn ×R is the state space. Each state s ∈ S is a tuple (c:, D:, t̃), where c: is the
vector of costs, D: is the vector of demands, and t̃ = T + 1 − t is the number of rounds
remaining. We write c:(s), D:(s), and t̃(s) to refer to the respective components of s.

• Ai =

{
[0, 1] if αi = λ

[ci, Dmax] if αi = p
is the action space for agent i, with the maximum possible

demand Dmax. For ai ∈ Ai, we write pi
t(ai) to the price corresponding to ai.

• Oi = ×obs∈ΩiO
obs is the observation space for agent i, where Oobs is the observation

subspace for the observation obs.

• p : S × A → S is the transition function. Since the transition is deterministic, it is a
delta function so that for s′ ∼ p(s, a), it holds that:

– t̃(s′) = t̃(s)− 1

– c:(s′) = c:(s)

– Di(s′) = Di(s)− ∆pi(s), where ∆pi(s) = pi(ai)− 1
n ∑j∈N pj(aj). If this resulted

in Di(s′) ≤ ci, then Di(s′) = 0 and the demands of all remaining agents are
normalized so that ∑j∈N Dj(s′) = ∑j∈N Dj(s).

• ri(s, a, s′) = (pi(a)− ci(s)) · (Di(s)− pi(a)) = ri
t is the reward function for agent i.

• oi = σi(s) ∈ Oi is the observation for agent i of a state s. It is a subset of the state as
indicated byΩi.

• ρ0 ∈ ∆(S) is the initial state distribution so that if s0 ∼ ρ0, it holds that ci(s0) ∼ Ci,
Di(s0) ∼ Di for all i ∈ N , and t̃(s0) = T.

• γ ∈ (0, 1] is the discount factor.

Given a trajectory τ = (s0, a0, r1, s1, a1, r2, s2, . . . ), we write pi
t(τ) for pi(at) and Di

t(τ) for
Di(st).

4.3. Analytical results

Bylka, Ambroszkiewicz, and Komar [5] find various analytical properties of their model,
including the game dynamics for certain strategies, best responses for certain setups,
and a NE in a restricted class of strategies.

4.3.1. Classification of Strategies

Agent i’s profit in round t can be expressed as

rt = λi
t̃(1 − λi

t̃)(Ri
t)

2 (4.1)
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reaching its maximum value for λ = 1
2 [5, Equation 6]. It is found that a strategy for an

arbitrary agent i can only be rational if λi
t ∈ [0, 0.5]∀t and λi

1 = 1
2 since playing 1 − λi

t
would dominate playing λi

t if λi
t >

1
2 [5, Lemma 3.1]. Therefore, from here on, only

such strategies are considered. Additional terminology is introduced in [5, Definition
3.2] with a strategy λi

: being called

• greedy if λi
2:T = 0, maximizing demand

• myopic if λi
: =

1
2 , maximizing short-term profit

• a stationary indicator strategy if λi
t̃ = l ∀t̃ ≥ 2 for some l ≥ 0.

4.3.2. Best responses

A recursive formula for an agent’s best response to the greedy strategy is derived [5,
Theorem 4.5]. For the special case of all agents having the same costs c, it is simplified
to

λi
t =


1−γ+γ(2−e)λi

t−1
2−γe+γe(2−e)λi

t−1
for 1 < t ≤ T

1
2 for t = 1

(4.2)

with e ≡ n−1
n [5, Theorem 4.9]. It further holds that

Ui = αT · (Ri
1)

2 = αT(Di
1 − ci)

2 (4.3)

[5, Theorem 4.5] with

αt =
1 − 2λt+1

2e(1 − 2λt+1)
(4.4)

[5, Theorem 4.10]. For γ = 1 the expression simplifies further to

λi
t =

1
2 + (t − 1)e

(4.5)

resulting in a total profit of [5, Theorem 4.10]

Ui =
T

2(2 + Te − e)
(Ri

1)
2 (4.6)

4.3.3. Symmetric Nash Equilibrium

We contribute the unique pure symmetric NE without demand observation and with
absolute price action parameterization, which is given by

pi
t =

1
2

(
D + c − 1

γt−1 ht+1
n − 1

n

)
∀i ∈ N (4.7)
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with

ht =

{
γt−1(pi

t − c) + ht+1 for 1 ≤ t ≤ T

0 for t = T + 1
(4.8)

where c = ci and D = Di are the costs and initial demand of the agents, respectively.
This result is derived in Appendix A.1.

4.4. Symmetric Nash Equilibrium with demand observation

Similarly to the case above, we augmented the analytic results by the pricing outcome
of a symmetric NE in the class of pure sub-game perfect strategies with demand
observation. We show that the pricing strategy of any such NE can be approximated
around the equilibrium point as

pi
t(Di

t) = pt + kt · (Di
t − D)

where

pt =
1
2
· (D + c − 1

γt−1 · ht+1 ·
n − 1

n
)

ht =

{
γt−1 · [(D − pt) · kt + (1 − kt) · (pt − c)] + ht+1 · (1 − kt) for 1 ≤ t ≤ T

0 for t = T + 1

kt =
1
2

See Appendix A.2 for the derivation.
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We will carry out a series of experiments, all based on the foundational setup de-
tailed in Section 5.1. Our metric collection process can be found in Section 5.2. For
each experiment, we will outline its purpose, specify its parameters, and detail our
expectations.

In every setup we discuss, parameters have been fine-tuned to yield optimal outcomes.
For an in-depth look at this process, refer to Appendix A.3.

5.1. Setup

Our experiments are represented as Markov games, as elaborated in Section 4.2. This
representation simplifies their implementation using PyTorch [18]. We employ IRL in a
batched manner on the GPU, as showcased in Algorithm 5.

Algorithm 5 Procedure for a training run
Initialize the environment
Initialize the agents/learning algorithms
for each iteration do

Sample a batch of new states at t = 1
for each time step do

Obtain agents’ observations from states
Derive agents’ actions based on these observations
Execute the actions
Retrieve agents’ rewards
Transition to the next state

end for
Update the agents’ learning algorithms
Optionally, assess agents’ policies and log results

end for

A training run refers to a single execution of Algorithm 5. An experiment, on the
other hand, might compile results from numerous training runs. As an example,
an experiment could repeat a training run with different values of a configuration
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parameter to evaluate its influence on the results. We execute each configuration ten
times using distinct random seeds to gauge the stability of our results, thus enabling
us to determine training uncertainties.

Agents can be individually tailored with a learning algorithm, ranging from fixed
strategies to various RL algorithms from stable baselines [19]. For our RL agents, we
employ PPO [12], with the network architecture detailed in Appendix A.3.7. Note
that we do not employ techniques such as a recurrent state to account for partial
observability, potentially causing discrepancies with the verifier (see Sections 3.2.3
and 3.4).

5.2. Analysis

5.2.1. Collecting metrics

To collect metrics, trajectories are sampled from trained agents. These agents compete
in the game without any policy updates, ensuring the training remains unattained from
the metric estimation process.

Any given metric m can be approximated using a set of trajectories T derived from
the agents’ policies:

Eτ∼π: [m(τ)] ≈ 1
|T | ∑

τ∈T
m(τ) (5.1)

Empirical studies show that |T | = 2000 provides a reliable estimation of the metrics in
focus.

The learning outcome, which is the strategy profile π:, inherently behaves as a
random variable due to the stochastic characteristics of RL algorithms. We postulate
that π: follows a distribution P ∈ ∆(Π:). The training uncertainty associated with a
metric m is defined as:

σπ:∼P(Eτ∼π: [m(τ)]) (5.2)

This uncertainty can be approximated by repeatedly training with varied random
seeds to sample different strategy profiles π: ∼ P. After estimating the metric m for
each outcome using Equation (5.1) we can compute the standard deviation of the metric
over the learning outcomes.

5.2.2. List of metrics

• Price Indicator Mean Eτ∼π: [λ
i
t̃(τ)]: Represents agent i’s average price indicator

in round t. For a trajectory τ, it is denoted as λi
t̃(τ) =

pi
t(τ)−ci(τ)

Di
t(τ)−ci(τ)

. λ = 0 implies
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the lowest price, zero profit, and maximum future demand. Conversely, λ = 1/2
signifies the highest rational price, peak present profit, and maximum future
demand loss. λ = 1 is reported for agents that drop out of the market for technical
reasons.

• Price Indicator Variance Vτ∼π: [λ
i
t̃(τ)]: Conveys the price indicator’s variability

for agent i in round t. If an agent’s strategy is purely round-dependent, this
serves as the policy variance.

• Utility Ui = Eτ∼π: [G(τ)]

• Utility Loss to the Best Response: U∗
i − Ui = Eτ∼πi∗,π−i [Gi(τ)]− Eτ∼π: [Gi(τ)]

Calculated as the gap between agent i’s best response utility and its actual utility.
This metric indicates proximity to the best possible reward, useful for assessing if
a strategy profile is an ϵ-NE. The best response utility may be estimated using
analytical results specific to the setup, or the brute force verifier in the general
case.

• Utility Fraction of the Best Response: Ui
U∗

i
= Eτ∼π: [Gi(τ)]

Eτ∼πi∗,π−i [Gi(τ)]
Similar to the previous

metric but in relative instead of absolute terms.

5.2.3. Role-based metrics

As described above, the strategy profile resulting from a training run is not deterministic.
In certain scenarios, an agent’s policy doesn’t even roughly demonstrate consistent
behavior across distinct random seeds. Instead, agents tend to adopt specific strategy
roles. Take the "Chicken" game as an illustration: two agents might individually
gravitate towards either the "Swerve" or "Straight" strategy role. While the consistency
of these roles persists across multiple runs, which agent assumes a particular role
remains unpredictable.

Given this behavior, it becomes more meaningful to aggregate metrics based on roles
rather than individual agents. As an example, the price indicator mean for a role ri in
round t can be denoted as Eτ∼π: [λ

ri
t̃ (τ)].

To implement this, the allocation of roles to agents must be determined for each
training run. While the specific assignment method varies by scenario, the consistent
utility of a strategy may act as a reliable indicator for the role assignments.

5.3. Best response learning

We begin with an experiment with strong theoretical foundations; the best response
learning experiment. Bylka, Ambroszkiewicz, and Komar [5] analytically derived the
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best response to the greedy strategy (see Section 4.3.2) for a setup with symmetrical
costs.

We try to replicate this result in its most general form through RL, randomizing the
initial demand and testing multiple discount factors. By fixing the strategies of all
agents except agent 0 to λ = 0 we reduce the problem to a MDP and can use PPO to
learn the best response. While not strictly necessary, we allow the agent to observe its
demand since this was observed to significantly improve the learning performance, for
more details see Appendix A.3.

We employ the reward fraction of the best response U0/U∗
0 and the price indicator by

round λ0
: as metrics for convergence to the best response in terms of utility and pricing

strategy, respectively.
Details of our experimental setup can be found in Table 5.2.

Parameter Value
Dynamic oligopoly
n 3
T 3, 10
γ ∈ {0.5, 0.7, 0.9, 1.0}
D: U (2, 5),U (2, 5),U (2, 5)
C: δ1, δ1, δ1

action parameterization α: λ, λ, λ

observations Ωi {t̃, Di
t}

Other parameters
strategies PPO, λ = 0, λ = 0
iterations 300
num_envs 2000
learning rate linear from 0.001 to 0
λ (GAE) 0.95
metrics U0

U∗
0
, E[λ0

: ], V[λ0
: ]

Table 5.2.: Parameters of the best response learning experiment

Given that our setup manifests as a deterministic, fully observable MDP, we an-
ticipate that PPO will seamlessly converge to the best response. While not being
groundbreaking on its own, being able to learn a best response reliably is a necessary
prerequisite for more complex experiments involving NE. Beyond this, we aim to
validate the efficacy of our dynamic oligopoly model representation as a Markov game.
Moreover, we seek insights into the potential implications of the strategy not being
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deterministic but a normal distribution with a small variance, at minimum.

5.4. Symmetric Nash Equilibrium learning

Our next step is to reproduce another analytical result: the symmetric NE as in
Sections 4.3.3 and 4.4.

We replicate the analytical setup and employ IRL with PPO, as shown in Figure 5.1.
We would like to verify convergence to a NE in terms of utility and pricing strategy

through the utility loss and the price indicator, respectively. However, no analytical
best response to strategies other than the equilibrium strategy is known, making the
brute force verifier our only method of verification in terms of utility. Since the verifier
has a computational limit of three stages we run the experiment both for T = 3 and
T = 10 rounds. The latter is not verifiable but might reveal further insights into the
level of convergence in terms of pricing strategy.

Parameter Value
Dynamic oligopoly
n 3
T 3 or 10
γ 1
D: δ5, δ5, δ5

C: δ4, δ4, δ4

action parameterization α: p, p, p
observations Ωi {t̃, Di

t (optional)}
Other parameters
strategies PPO, PPO, PPO
iterations 200
num_envs 7000
learning rate linear from 0.001 to 0

λ (GAE)

{
0.999 no demand observation

0.95 demand observation
metrics Ui

U∗
i
∀i ∈ N , U∗

i − Ui ∀i ∈ N , E[λ:
:], V[λ:

:]

Figure 5.1.: Parameters of the symmetric NE learning experiment

Unlike in the best response learning experiment, allowing the agents to observe
their demand does modify the game. This is because an agent’s demand is no longer
computable from its own strategy alone but requires knowledge of the strategies of all
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other agents. We investigate if demand observation increases the pricing, as predicted
by our analytical results.

We expect the outcome of this experiment to be symmetric w.r.t. the agents given
their identical setup. However, it remains to be seen how closely the learned strategies
resemble the equilibrium strategy, given the complex dynamics of MARL.

5.5. Asymmetric Nash Equilibrium learning: Verifiable

Building upon the symmetric NE learning experiment, we introduce an asymmetry: we
vary the costs of agent 0 while keeping other parameters constant (refer to Table 5.5).
We will make use of the verifier, restricting the game to three stages without demand
observation.

Parameter Value
Dynamic oligopoly
n 3
T 3
γ 1
D: δ5, δ5, δ5

C: δc0 (c0 ∈ [3.0, 4.5]), δ4, δ4

action parameterization α: p, p, p
observations Ωi {t̃}
Other parameters
strategies PPO, PPO, PPO
iterations 200
num_envs 7000
learning rate linear from 0.001 to 0
λ (GAE) 0.999
metrics U:, U∗

i − Ui ∀i ∈ N , Ui/U∗
i ∀i ∈ N

Table 5.5.: Parameters of the verifiable asymmetric NE learning experiment

In our analysis, we prioritize examining the implications of this asymmetry on the
learning outcome. Of all the potential metrics, we specifically focus on the utilities,
which are the most important indicator of success for the agents. Additionally, we
aim to ascertain whether a NE is achieved using the brute force verifier. While it is
anticipated that any reduction in costs will be advantageous for agent 0, the precise
dynamics and the ripple effects on other agents, especially in light of dropouts, are
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5. Methodology

subjects of our inquiry.

5.6. Asymmetric Nash Equilibrium learning: Large

Expanding upon the previous experiment, we extend the number of stages to T = 10.
This aims to capture richer dynamics but comes at the expense of verifiability. Addi-
tionally, we permit demand observation to enhance stability, as detailed in Table 5.7.

Our observations reveal that agents probabilistically adopt strategy roles. Conse-
quently, we present utility results by role rather than by agent. Specifically, agent 0
consistently selects r0. In contrast, agents 1 and 2 fluctuate between r1 (yielding higher
profits) and r2 (less profitable). The role choices of agents 1 and 2 in each training run
are discerned based on their comparative utilities.

Parameter Value
Dynamic oligopoly
n 3
T 10
γ 1
D: δ5, δ5, δ5

C: δc0 (c0 ∈ [3.0, 4.5]), δ4, δ4

action parameterization α: p, p, p
observations Ωi {t̃, Di

t}
Other parameters
strategies PPO, PPO, PPO
iterations 200
num_envs 7000
learning rate linear from 0.001 to 0
λ (GAE) 0.999
metrics Uri for roles r0, r1, r2

Table 5.7.: Parameters of the large asymmetric NE learning experiment
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6. Results

6.1. Best Response Learning

PPO shows a robust convergence towards the best response in both reward and strategy,
as illustrated in Figure 6.1 and Table 6.1. Despite notable policy variance, the mean still
aligns closely with the analytical deviation.

An outlier to this observation occurs in the later stages with a diminutive discount
factor. Here, the mean price indicator falls notably short of the best response. Intrigu-
ingly, as the discount factor is reduced, the reward approaches its optimal value more
closely.
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Figure 6.1.: Strategy learned by PPO for different discount factors. The training uncer-
tainty is indicated by the error bars while the policy variance is illustrated
by the shaded area.

γ U0/U∗
0

0.5 0.994805 ± 0.000389
0.7 0.994759 ± 0.000445
0.9 0.994079 ± 0.000451
1.0 0.991862 ± 0.000647

Table 6.1.: Utility achieved by PPO compared to its optimal value (computed analyti-
cally) for different discount factors.
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6.2. Symmetric Nash Equilibrium Learning

When learning without demand observation, the derived policy aligns with the ana-
lytical model, as illustrated in Figure 6.2. For the 10-stage game, the incorporation of
demand observation leads to elevated prices in initial rounds, matching our prediction.
However, in the 3-stage scenario, this trend is only faintly evident. It is important to
highlight that the fit, when observing demand, is not as precise compared to when
demand is unobserved. This fit is strongly influenced by the GAE parameter λ (refer to
Appendix A.3.3).

Remarkably, PPO identifies a policy that outperforms the verifier’s estimate for the
value of the best response by approximately 1%, as detailed in Table 6.2. This renders
the strategy profile for T = 3 without demand observation as an approximate NE,
accounting for discretization errors.
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(a) T = 3

1 2 3 4 5 6 7 8 9 10
Round

0.0

0.1

0.2

0.3

0.4

0.5

[
]

NE (no demand observation)
NE (with demand observation)
Agent 0 (with demand observation)
Agent 1 (with demand observation)
Agent 2 (with demand observation)
Agent 0 (without demand observation)
Agent 1 (without demand observation)
Agent 2 (without demand observation)

(b) T = 10

Figure 6.2.: Strategy learned by each agent in the symmetrical setup with and without
demand observation, with the error bars indicating training uncertainties.

Metric Agent 0 Agent 1 Agent 2

U∗ − U −0.006176 ± 0.004107 −0.006173 ± 0.004147 −0.006064 ± 0.004050
U/U∗ 1.009694 ± 0.006474 1.009682 ± 0.006532 1.009526 ± 0.006397

Table 6.2.: Utility achieved by PPO for T = 3 without demand observation compared
to its optimal value estimated by the verifier.
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6.3. Asymmetric Nash Equilibrium learning: Verifiable

Figure 6.3 illustrates that as the costs for agent 0 rise, its profits correspondingly
decrease. This relationship is near-perfectly represented by a quadratic fit, reaching
its minimum at c0 = 4.62, U0 = 0.02. Notably, the only deviations from this fit occur
around c0 ≈ 4.35.

Agents 1 and 2 display identical profits across all c0 values, which is unsurprising
given their identical setup. As the competitive advantage wanes, their profits exhibit
a moderate increase. There’s a pronounced jump from U1 = U2 = 0.6 | c0 = 4.3 to
U1 = U2 = 3 | c0 = 4.4. It is worth noting that the uncertainties during the training
phase are negligible for all cost values.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
c0

0

1
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3
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U

Agent 0
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Quadratic fit

Figure 6.3.: Profits by agent over costs c0 of agent 0 for T = 3. The shaded area indicates
the training uncertainty, even though it is too small to be visible. The
quadratic fit has the coefficients U0 ≈ 1.61c2

0 − 14.87c0 + 34.36 = 1.61(c0 −
4.62)2 + 0.02.

Further, Figure 6.4 demonstrates that, with the exception of c0 = 4.5, PPO consistently
outperforms the verifier’s best response estimate. At c0 = 4.5, the utility loss measures
roughly 9% of the potential utility or 0.0056 in absolute terms. This positions the
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6. Results

strategy profile as a NE when c0 ̸= 4.5, and as a 0.0056-NE when c0 = 4.5.
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Figure 6.4.: Utility achieved by PPO compared to its upper bound estimated by the
verifier for different costs c0 at T = 3. The shaded area indicates the training
uncertainty. Discretization errors may lead to negative utility losses, refer
to Section 3.4 for details.

6.4. Asymmetric Nash Equilibrium learning: Large

Figure 6.5 suggests that the game dynamics for the "large" version retain qualitative
similarities to its "small" counterpart near the symmetrical point. As agent 0’s com-
petitive advantage grows, its profits rise, while the profits for the other agents drop,
notably experiencing a jump when c0 = 4.1.

However, in quantitative terms, the game showcases far more pronounced behavior.
There is an increased sensitivity to cost changes, and overall profits as well as their
range are higher.

Delving into the dynamics for large c0 values, we observe that agent 0’s profits
plunge from U0 = 1 | c0 = 4.05 to 0.5 | c0 = 4.1. Conversely, profits for the other agents
surge from U1 = U2 = 1.5 | c0 = 4.05 to U1 = U2 = 9 | c0 = 4.1. Beyond c0 = 4.1,
agents 1 and 2’s profits stabilize at U1 = U2 = 9, while agent 0’s profits steadily decline,
dropping to U0 = 0.05 by c0 = 4.5.

Notably, agent 0’s profit sees a sharp escalation from 3 | c0 = 3.8 to 80 | c0 = 3.7.
Further reduction in costs to c0 = 3.0 results in approximately a 2.5-fold decrease in its
profit.

For agents 1 and 2 smaller c0 values unveil a unique pattern, absent in the smaller
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Figure 6.5.: Profits in relation to the costs c0 of agent 0 for T = 10. The shaded area
indicates training uncertainty.
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6. Results

version of the game. Within the interval c0 ∈ [3.3, 3.7], either agent 1 or agent 2 achieves
a significantly higher profit than the other, despite their symmetry. Agents 1 and 2
learn the higher- and lower-profit strategy roughly equally often for different random
seeds, with a distribution of 113 : 87 over all seeds and values of c0. The more profitable
agent achieves roughly the same profit in all training runs, but it varies between runs
which agent this is, with similar results for the less profitable agent.

To be more precise, agents 1 and 2 probabilistically adopt one of two strategy roles
during the training. The agent picking role 1 yields around 5 times the profit of that
with role 2. By c0 = 3.1, these roles converge, only to diverge again when c0 reaches
3.0. Intriguingly, when c0 is increased from 3.8 to 3.7, the agent adopting the more
profitable role benefits from its more severe competitive disadvantage.

Training uncertainties remain negligible with exceptions only in the regions around
c0 = 4.1 and c0 = 3.8.
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7. Analysis

7.1. Best response learning

In summary, the training proved to be effective. The response learned aligns well
with the analytical best response identified by Bylka, Ambroszkiewicz, and Komar [5],
both in terms of reward and strategy. The alignment of the average price indicator
with the best response is not inherently evident considering the model’s non-linearity.
The consistent policy variance relative to the round index can be attributed to the
observation-independent standard deviation, as illustrated by the policy network
architecture in Figure A.9.

We hypothesize that intense discounting might reduce the strength of the signals
reaching the algorithm in later rounds, resulting in the deviation from the optimum
strategy that was observed. To gauge the peak signal strength, we evaluated the
maximum profit attainable in each round, predicated on the agent’s strategy prior
rounds. A diminished maximum profit implies the agent’s actions exert minimal
influence on the reward, leading to a weakened signal.

As depicted in Figure 7.1, both the maximal achievable profit and, correspondingly,
the agent’s signal, are diminished for minor discount factors during later stages. These
zones coincide with significant deviations from the best response in Figure 6.1, substan-
tiating that a reduced signal strength could rationalize the suboptimal performance of
PPO in these domains.

To conclude, PPO adequately learns the best response, with minor exceptions for
extremely low discount factors. Yet, even in these instances, the discrepancies are
justifiable. This is a promising result for more complex setups, where analytical results
are not as strong as in this case.

7.2. Symmetric Nash Equilibrium Learning

In the verifiable version of this setting (T = 3, without demand observation), we
discerned that agents effectively learn a NE to a precision matching the verifier’s
discretization error.

Moreover, the strategies adopted by agents align closely with our analytical predic-
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Figure 7.1.: Maximum profit achievable per round in the best response learning,
assuming the agent adopts the strategy learned in preceding rounds.
The round’s peak profit results from deploying λ = 1/2, equating to
ri

t = 0.5 · (1 − 0.5) · (Ri
t)

2 = 0.25 · (Ri
t)

2 (refer to Equation (4.1)).
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tions for this context. The observation that agents adopt precisely this strategy, coupled
with the brute force validation of their strategies as a NE, reinforces our conviction that
a NE is indeed learned.

In the scenario with T = 10 void of demand observation, the strategies pursued by
agents continue to align with our analytical expectations. Given the parallels with the
verifiable context, it is conceivable that agents are navigating towards a NE here as well.
Notwithstanding, the multiplicity of stages prevents direct verification.

Transitioning to experiments incorporating demand observation, we discern a pattern:
the additional observation steers towards higher pricing. This difference magnifies from
neutrality in the terminal round to its peak in the first round. The outcome matches
our analytical prediction; to gain further insights into the rationale, we contrast two
polarized strategy profiles: the "greedy" and the "myopic" strategy profiles.

The "greedy" profile requires no cooperation to work; no agent can suffer a loss from
another agent deviating. However, it is not favorable to the agents since they make no
profit in any but the last round.
Conversely, the "myopic" profile emerges as the antithesis: it yields the highest total
profits in the class of symmetric strategy profiles but requires the agents to believe that
the other agents will cooperate. Each agent can easily deviate, driving the other agents
out of the market and dramatically increasing its own profit. This strategy profile
would require an altruistic dictator (from the perspective of the companies, not the
consumers) to work.

In the absence of insights into their current demand, agents are blindsided regarding
competitor strategies in-play. Consequently, they learn a strategy that is close to the
greedy strategy profile, with price indicators close to zero in the first rounds. With
demand observation, on the other hand, the agents have a way of testing if the other
agents are cooperating. This makes it less risky to play higher prices in early rounds
since the agents can react to deviations of their competitors, avoiding being driven out
of the market.

7.3. Asymmetric Nash Equilibrium learning: Verifiable

Firstly, the jump in the profits of agents 1 and 2 at c0 = 4.3 is striking. This is suspected
to originate from the discontinuity of agents opting out of the game. To validate this
presumption, we examined the average demand per agent for each round immediately
before and after the jump, as illustrated in Figure 7.2. Observably, while on the "left"
side of this jump the demands subtly lean towards agents 1 and 2, they manage to
edge the disadvantaged agent 0 out of the market on the "right" side. As agent 0
exits the scene, the demand potential it previously held becomes available for the
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remaining contenders, significantly boosting their profits. Yet for agent 0, the dent in
profit remains relatively minor as it was already teetering close to zero.
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Figure 7.2.: Average demands per round for each agent with cost values flanking the
jump at c0 = 4.3 in the verifiable asymmetric NE learning experiment.

Further, the precision of the quadratic fit in tracing the correlation between agent
0’s profits and its costs is intriguing, particularly around the jump. While a complete
understanding remains elusive, some preliminary insights suggest a potential rationale
for this observed relationship.

Bylka, Ambroszkiewicz, and Komar [5] identified numerous scenarios where an
agent’s profit displayed a quadratic dependence on its relative demand potential,
evident in equations like Equation (4.1) and Equation (4.3). Such relationships often
presuppose other agents following a predetermined strategy. While that might not
precisely align with our current setup, it’s an approximation that carries weight: Should
agent 0 bear significantly lower costs than its counterparts, they would gravitate towards
their minimum price, i.e. their invariable production costs. The congruence of the
vertex at c0 = 4.62, U0 = 0.02 with a relationship directly proportional to the squared
initial relative demand potential (i.e., c0 = 5.0, U0 = 0) fortifies this perspective.

One might initially conjecture that the jump at c0 = 4.3 would compromise the
quadratic fit. However, its diminutive magnitude prevents any drastic impact. Nonethe-
less, when visualized on a logarithmic scale, the error in the fit emerges as more
pronounced.

In attempting to understand the significant relative utility loss for agent 0 at c0 = 4.5
when using PPO, we put forth the following potential explanations:

• Insufficient signal: Despite the relative utility loss being pronounced, the absolute
loss remains small. This could result in weak signals reaching the algorithm,
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similar to the scenario detailed in Section 7.1.

• No perfect recall: Unlike the verifier, the agents do not have perfect recall, as
described in Section 3.4. The lack of information might be especially determinant
in this scenario.

• Ineffective learning: The learning process might simply have been ineffective in
this particular instance.

7.4. Asymmetric Nash Equilibrium learning: Large

In this experiment, we observe several intricate phenomena. We focus on elucidating
two: the profit jumps w.r.t. c0, and the disparity between agents 1 and 2 despite their
identical setup.

7.4.1. Explaining the jumps in the agents’ profits

As laid out in Section 6.4, the profits of the agents exhibit two jumps at c0 = 3.75 and
c0 = 4.1. We hypothesize that these jumps arise due to agents leaving the game, like in
Section 7.3. To validate this assumption, we plotted the number of rounds agents stay
in the game for different values of c0 in Figure 7.3.

A key observation is the alignment between profit jumps and the instances when
agents exit the game. For the interval c0 ∈ [3.75, 4.1], no agents are removed. Notably,
the jumps occur precisely at this interval’s endpoints.

We also posit that the training uncertainty spikes at these boundaries because, in
some training seeds, agents may remain while in others, they might exit.

7.4.2. Explaining the asymmetry of agents 1 and 2

Despite their identical setup, agents 1 and 2 probabilistically adopt distinct strategy
roles with diverging payoffs in the interval c0 ∈ [3.3, 3.7], as described in Section 6.4.
To delve deeper, we visualized their price indicators in Figure 7.4. These roles can be
categorized as:

• Role 0 (Agent 0’s role): This agent initially uses small lambda values, driving its
competitors out of the game.

• Role 1 ("Straight"): Taken by either agent 1 or 2, this role involves playing small
lambda values at the game’s outset and converting its demand potential into
profit midway, thereby leaving the game. The agent adopting this role reaps
substantial profits if it can capitalize on the other agent dropping out of the game.
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Figure 7.3.: Number of rounds agents stay in the game for varying values of c0 in the
large NE learning setup. The shaded area indicates the training uncertainty.
The number of rounds an agent stays in the game is estimated by the
number of rounds an agent has an average demand that is higher than its
costs.

We term this the "straight" strategy since it relies on the other agent "swerving"
and dropping out of the game.

• Role 2 ("Swerve"): The alternative role for agents 1 or 2. Here the agent deploys
large lambda values right from the beginning, guaranteeing moderate profits at
the cost of an early exit after the third round. We call this the "swerve" strategy
due to its risk-averse nature.

It is plausible that agent 0 invariably profits from eliminating other agents, thereby
amplifying its initial relative demand potential from R = 5 − 4 = 1 to R = 3 × 5 − 4 =

11, especially since profit scales quadratically with the relative demand potential. Thus,
we’ll treat agent 0’s strategy as a constant and shift our attention to agents 1 and 2.

To find a reason for agents 1 and 2 choosing different strategies, we formulated a
simplified payoff matrix for these agents, displayed in Table 7.1. This matrix, built upon
the strategy roles learned, approximates the agents’ decision-making process when
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Figure 7.4.: Strategy roles learned as in Section 5.6 for c0 = 3.5, with the shaded area
illustrating V[λri

t̃ ] and the error bars indicating the training uncertainty.
Role 0 is that of agent 0 while roles 1 and 2 are that of the more- and less
profitable of agents 1 and 2, respectively. λ = 1 is reported if agents drop
out of the game. Further, agents can observe the demand in this setup,
therefore the shaded area is significantly higher than the policy variance.
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faced with the choice of "straight" or "swerve".

Agent 2
Agent 1 Straight Swerve

Straight 0.064, 0.064 0.583, 0.315
Swerve 0.315, 0.583 0.378, 0.378

Table 7.1.: Payoff matrix for the reduced game of the setup in Section 5.6 for c0 = 3.5.
It is simplistically assumed that agents 1 and 2 can only choose between
the "straight" and "swerve" strategies and that agent 0 always plays strategy
role 0. We approximate all three strategy roles as constant-lambda-by-round
strategies with the lambda distributions being approximated as normal
distributions with the means and variances of the price indicators learned
by the agents. Note this does not fully match the strategies learned by PPO
since the algorithm can observe the demand. This analysis methodology
dramatically simplifies the agents’ decision problem; in the real game, agents
can both vary their pricings during the game based on demand observations
and choose from a far larger set of strategies. Therefore, this reduction can
only give a qualitative intuition of the nature of the game.

A key insight from our analysis is the resemblance of this game to the classic
"Chicken" game described in Section 3.1.1. In this scenario, only one of agents 1 and 2
can effectively counter agent 0 over a substantial duration. The "straight" strategy relies
on the other agent adopting the "swerve" approach, maintaining a high average price,
enabling the "straight" player to persist. Conversely, both playing "straight" leads to a
shared downfall since both players will be eliminated without ever capitalizing on their
demand potential.

Drawing parallels with "Chicken", this offers an intuitive grasp of the strategies’
asymmetry. The pure Nash equilibria in "Chicken", [straight, swerve] and [swerve,
straight], align with our learning outcomes. While "Chicken" also presents a mixed Nash
equilibrium, its feasibility remains in question given the policy’s reliance on normal
distributions. Despite our analysis being a simplification, it renders the observed
outcomes conceivable.
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8. Conclusion

In this work, we translated the market model introduced by Bylka, Ambroszkiewicz,
and Komar [5] into a Markov game, allowing us to apply RL to it.

We learned the best response to the greedy strategy that was derived analytically
with single-agent RL. In a symmetrical setup, we found a NE through IRL. This NE
is verified using a brute-force verifier in a small case, and it matches our analytical
considerations. We observed that the learning outcome depends on the observation
space in that transparency increases the pricing.

Once we break the symmetry, we cannot rely on analytical results anymore, and the
dynamics increase in complexity. In a small setup, we found a brute-force-verified NE
through IRL again, for different levels of asymmetry. The expectation that a competitive
advantage leads to a higher profit was confirmed, and we observed that an increase in
the competitive advantage of one agent harms the other agents, even if their absolute
setup remains unchanged. Once an agent is disadvantaged too much, it drops out of
the game, causing a discontinuous increase in the remaining agents’ profits.

When increasing the number of rounds, the results get even more complex, at the
cost of verifiability. We observed a behavior similar to the smaller case, but with two
"jumps" in the agents’ profits w.r.t. their competitive advantage, all of which can be
traced back to agents dropping out of the game. Most surprisingly, two identical
disadvantaged agents were observed to stochastically adopt distinct strategy roles, one
of which is significantly more profitable than the other. Even though we cannot fully
explain this phenomenon, we give an intuition for the asymmetry using an analogy to
the game "Chicken".

We conclude that IRL with PPO achieved its learning objective in all the cases we
considered if configured properly. This makes us optimistic that MARL can also
be employed to approximate NE in other scenarios where traditional approaches
fail. However, more efficient verification methods are needed to make the results of
increasingly complex setups with more than three stages meaningful.

In our study of the dynamic oligopoly model, its apparent simplicity belied the
emergence of diverse phenomena, most of which would have been hard to discover
using traditional methods. Although we deepened our understanding of the model
with several new insights, we maintain that this is just an initial foray into the potential
of MARL in this area.
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Abbreviations

RL Reinforcement Learning

BNE Bayes Nash Equilibrium

MDP Markov Decision Process

NE Nash Equilibrium

MARL Multi-Agent Reinforcement Learning

PPO Proximal Policy Optimization

GAE Generalized Advantage Estimation

IRL Independent Reinforcement Learning
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A. Appendix

A.1. Derivation of the Symmetric Nash Equilibrium

Consider a dynamic oligopoly in its Markov game formulation with symmetric produc-
tion costs c and initial demand D where the agents can only observe the round index t̃,
i.e.

Parameter Value
n n
T T
γ γ

D: δD, δD, . . .
C: δc, δc, . . .
action parameterization α: p, p, . . .
observations Ωi {t̃}

Pure strategy profiles can be parameterized by p:
: so that πi(oi) = δpi

t(oi)
. For symmet-

ric NE, all agents have the same demand (Di
t = Dt ∀i) in each round, and since total

demand is constant, Di
t = Dt = D ∀i, t. Since demand is constant, no agents drop out

of the game and Ui is a differentiable function of p:
:. Being a Nash equilibrium requires

the pricing strategy pi
: to be optimal given the other agents’ strategies, and therefore

∂pi
t
Ui = 0 ∀t. Recall the definition of Ui and Ui,t:

Ui =
T

∑
t=1

γt−1ri
t

Ui,t =
T

∑
t′=t

γt′−1ri
t′
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We can use this to derive a recursive formula for the symmetric NE:

∂pi
t
Ui =

∂pi
t

T

∑
t′=1

γt′−1ri
t′ =

∂pi
t
∑t−1

t′=1 γt′−1ri
t′

∂pi
t

+
∂ri

tγ
t−1

∂pi
t

+
∂Ui,t+1

∂pi
t

=

0 +
∂ri

tγ
t−1

∂pi
t

+
∂Ui,t+1

∂Di
t+1

∂Di
t+1

∂pi
t

=

γt−1 ∂(pi
t − ci)(Di

t − pi
t)

∂pi
t

+
∂Ui,t+1

∂Di
t+1

∂Di
t − (pi

t − 1
n ∑j∈N pj

t)

∂pi
t

=

γt−1(Di
t − 2pi

t + ci)−
∂Ui,t+1

∂Di
t+1

n − 1
n

!
= 0

It can be seen that Ui is a quadratic function of pi
t with a negative leading coefficient,

and therefore ∂pi
t
Ui = 0 is not just a necessary but also a sufficient condition for a global

maximum.
Introducing the alias ht ≡ ∂Di

t
Ui,t, we can rewrite the above equation as

pi
t =

1
2

(
Di

t + ci −
1

γt−1 ht+1
n − 1

n

)
(A.1)

We set hT+1 = 0, using the fact that Ui,T+1 = 0, being an empty sum. For t ≤ T, we
can recursively derive ht as follows:

ht = ∂Di
t
Ui,t

=
∂ri

tγ
t−1

∂Di
t

+
∂Ui,t+1

∂Di
t+1

∂Di
t+1

∂Di
t

= γt−1 ∂(pi
t − ci)(Di

t − pi
t)

∂Di
t

+ ht+1
∂Di

t − (pi
t − 1

n ∑j∈N pj
t)

∂Di
t

= γt−1(pi
t − ci) + ht+1 · 1

Consequently, we have

ht =

{
γt−1(pi

t − ci) + ht+1 for 1 ≤ t ≤ T

0 for t = T + 1
(A.2)
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Figure A.1.: Symmetric NE without demand observation for T = 20, n = 3, D = 5,
c = 4 as derived analytically for different values of γ

Using λi
t̃ =

pi
t−ci

D−
t ci

, the result of the recursive formula has been plotted in Figure A.1. It
can be seen that the further the game progresses, the more the firms focus on short-term
profits, i.e. increase their prices. As expected, a smaller discount factor γ causes firms
to focus more on short-term profits, i.e. increase their prices more quickly.

For γ = 1, it can be seen that the price indicator approaches zero in all but the last
rounds.

A.2. Derivation of the Symmetric Nash Equilibrium with
demand observation

Building on the previous result, we will now derive the symmetric NE with demand
observation:

Parameter Value
n n
T T
γ γ

D: δD, δD, . . .
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C: δc, δc, . . .
action parameterization α: p, p, . . .
observations Ωi {t̃, Di

t}

With demand observation, the sequential nature of the game comes into play. The
strategy space explodes, consisting of all combinations of functions of the price given
the demand observed for each round for each agent. With this explosion of strategies
also comes an explosion of NE. For instance, the strategy profile where all agents play
the myopic strategy unless they observe a deviation, in which case they play the greedy
strategy, is a NE. Therefore, we will make the following assumptions:

• Symmetry: The pricing strategy is the same for all agents

• Pure strategies: The agents do not randomize their actions.

• Continuity: For each agent i ∈ N , the pricing strategy pi
t is a continuous function

of the demand observed Di
t in all rounds. Around the equilibrium point, the

strategy can be approximated by a linear function

pi
t = pt + kt · ∆Di

t

where pt is the price at the equilibrium point (the point where Di
t = D ∀i, t)

and ∆i
t = Di

t − D is the deviation of the observed demand from the equilibrium
demand.

• Sub-game perfection: At each point t of the game, each agent plays a strategy
that maximizes its future reward Ui,t.

• Linearity of value: The value of a state st for an agent i is fully described by its
demand Di

t, i.e. it does not matter for an agent how the remaining demand is
distributed among the other agents.

We will start with some basic observations:

Di
t = D + ∆Di

t (A.3)

pi
t = p̄i

t + ki
t · ∆Di

t (A.4)

p̄i
t = pt ∀i ∈ N (A.5)

ki
t = kt ∀i ∈ N (A.6)

and therefore if t ≤ T:
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Ui,t = γt−1 · (Di
t − pi

t) · (pi
t − c) = γt−1 · (D + ∆Di

t − pt − kt · ∆Di
t) · (pt + kt · ∆Di

t − c)
(A.7)

Next, it holds that

∂Di
t+1

∂Di
t

=
∂Di

t + ∑j∈N (pj
t/n)− pi

t

∂Di
t

= 1 +
∂ ∑j∈N\{i}(pj

t/n)

∂Di
t

+ ∂Di
t
(pi

t/n)− kt

= 1 +
1
n

∂ ∑j∈N\{i}(pt + Dj
t · kt)

∂Di
t

− kt ·
n − 1

n

= 1 +
kt

n
∂ ∑j∈N\{i}(Dj

t)

∂Di
t

− kt ·
n − 1

n

= 1 +
kt

n
∂(D · n − Di

t)

∂Di
t

− kt ·
n − 1

n

= 1 − kt

n
− kt ·

n − 1
n

= 1 − kt

(A.8)

Note this is the major change compared to the previous section, where we had
∂Di

t+1
∂Di

t
= 1. Allowing agents to react to demand changes reduces their ability to "take

demand from one round to the next".
Further, we have

∂Di
t+1

∂pi
t

= ∂pi
t
(Di

t + ∑
j∈N

(pj
t/n)− pi

t) = −n − 1
n

(A.9)

Now, we are ready to state our first condition of optimality: At the equilibrium point,
no agent should have an incentive to deviate. Since in equilibrium, ∆Di

t = 0 ∀i, t, we
have

0 =∂ p̄i
t
Ui,t

=∂ p̄i
t
(γt−1 · (D − p̄i

t) · ( p̄i
t − c)) + ∂ p̄i

t
Ui,t+1 = γt−1 · (D − 2p̄i

t + c) +
∂Ui,t+1

∂Di
t+1

·
∂Di

t+1

∂ p̄i
t

=γt−1 · (D − 2p̄i
t + c)− ht+1 ·

n − 1
n
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with ht = ∂Di
t
Ui,t as defined in the previous section. This yields

pt = p̄i
t =

1
2
· (D + c − 1

γt−1 · ht+1 ·
n − 1

n
) (A.10)

Now, let us find an expression for ht:

ht =∂Di
t
Ui,t

=∂Di
t
(γt−1 · (D + ∆Di

t − pt − kt · ∆Di
t) · (pt + kt · ∆Di

t − c)) + ∂Di
t
Ui,t+1

=γt−1 · [(D + ∆Di
t − pt − kt · ∆Di

t) · kt + (1 − kt) · (pt + kt · ∆Di
t − c)] +

∂Ui,t+1

∂Di
t+1

·
∂Di

t+1

∂Di
t

and therefore at the equilibrium point using Equation (A.8)

ht = γt−1 · [(D − pt) · kt + (1 − kt) · (pt − c)] + ht+1 · (1 − kt) (A.11)

Now we come to the final condition: sub-game optimality. If agents maximize their
reward in each sub-game, they do so for small deviations, too. Optimal behavior in the
sub-game is equivalent to choosing ki

t optimal given the deviation ∆Di
t:

0 =∂ki
t
Ui,t

=∂ki
t
(γt−1 · (D + ∆Di

t − pt − kt · ∆Di
t) · (pt + kt · ∆Di

t − c)) + ∂ki
t
Ui,t+1

=γt−1 · ∆Dt · (D + ∆Di
t − pt − kt · ∆Di

t − pt − kt · ∆Di
t + c) +

∂Ui,t+1

∂Di
t+1

∂Di
t+1

∂pi
t

∂pi
t

∂ki
t

=γt−1 · ∆Dt · (∆Di
t − 2kt · ∆Di

t + ht+1
n − 1

n
1

γt−1 )− ht+1 ·
n − 1

n
· ∆Di

t

with the last equality holding since Equation (A.10) ⇔ D − 2pt + c = ht+1
n−1

n
1

γt−1 .

Therefore, dividing by γt−1 · ∆Dt, we have

∆Di
t − 2kt · ∆Di

t + ht+1
n − 1

n
1

γt−1 = ht+1 ·
n − 1

n
1

γt−1

and consequently

kt =
1
2

(A.12)

Putting it all together (Equations (A.10) to (A.12)), we have the recursive formula:
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pt =
1
2
· (D + c − 1

γt−1 · ht+1 ·
n − 1

n
) (A.13)

ht =

{
γt−1 · [(D − pt) · kt + (1 − kt) · (pt − c)] + ht+1 · (1 − kt) for 1 ≤ t ≤ T

0 for t = T + 1
(A.14)

kt =
1
2

(A.15)

The result is plotted in Figure A.2. It can be seen that demand observation causes
the price indicator to stabilize at a constant value for γ = 1 in the early rounds. This is
in contrast to the case without demand observation, where price indicators approach
zero in all but the final few rounds.

Figure A.2.: Symmetric NE for T = 20, n = 3, D = 5, c = 4 with demand observation
as derived analytically for different values of γ

As a check of plausibility we compute the pricing strategy in the last round. Here, it
is known that playing λ = 1/2 is optimal:
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pi
T = pT + kT · ∆Di

T

=
1
2
· (D + c − 1

γT−1 · hT+1 ·
n − 1

n
) +

1
2
· (Di

t − D)

=
1
2
· (D + c) +

1
2
· (Di

t − D)

=
1
2
· (c + Di

t)

= c +
1
2︸︷︷︸
λ∗

·(Di
t − c)

A.3. Fine-tuning Parameters

A.3.1. Learning rate and number of iterations

A good learning rate was found in the best response learning experiment. We varied
the rate to find a value that allows for the fastest stable convergence. We then selected
an iteration number so that training stops once the agent does not improve anymore.
The utility by iteration in this setup for the base experiment is shown in Figure A.3.

Another measure we used to verify convergence is numerical policy gradients. When
the means of the policy learned did not match the analytical best response for initial
configurations we wanted to test if the variance of the policy was causing this deviation.
A possible explanation would have been that, given the fact that the policy always
has at least some standard deviation, the optimal mean of the policy given its variance
would not match the optimal mean for variance zero. To test this, we calculated the
numerical gradients of the utility w.r.t. the policy means, given the standard deviation.
The results in Figure A.4 that for the properly configured setup, the gradients approach
zero in the last iteration.

A.3.2. Demand observation and GAE

At some point, we found that the agent overshoots the best response price in initial
rounds when the demand is not observed in the best response learning experiment.
We discerned the reason for this is the bias introduced by the GAE [14]. Recall the
definition of the GAE in Section 3.2.3:

ÂGAE(λ)
t =

∞

∑
l=0

(γλ)lδt+l (A.16)
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0 50 100 150 200 250 300
Iteration

10 2

10 1

1
U U

*

Figure A.3.: Lost utility by iteration for the best response learning experiment with
T = 4 and fine-tuned parameters. Error bars indicate training uncertainty.

with δt = rt + γVπθ
(st+1)− Vπθ

(st) being the temporal difference error.
This estimate is sensible if Vπ(s) captures the value of a state reasonability well.

However, if demand is not observed, the only information to judge the value of a state
on is the round index. Consider the extreme case where λ = 0. Then it holds that [14,
Equation17]:

ÂGAE(0)
t = δt = rt + γVπθ

(st+1)− Vπθ
(st) (A.17)

The value estimate of the state is independent of the action in this extreme case.
Therefore, in the policy update, maximizing the advantage estimate is equivalent to
maximizing the reward rt, ignoring future rewards. Figure A.5 illustrates that this
indeed happens; the myopic strategy is learned for λ = 0. It is only for λ = 1 that
the advantage estimate is unbiased and the strategy converges to the best response.
This information is valuable for the symmetric NE learning experiment, where no best
response is available to compare to, and the demand is not observed.

Even with adequately-configured GAE-parameters we observed the training to per-
form significantly better if demand is observed, especially if the initial demand is
randomized, as depicted in Figure A.6. This makes sense since demand observation
allows the value function to do its job of predicting the value of a state.
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Round

1
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Iteration 20.0
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Figure A.4.: Numerical gradients of the utility w.r.t. the policy means for the best
response learning experiment with T = 4 and fine-tuned parameters.
Gradients are estimated by measuring the policy mean and variance as
learned by the agent, and computing the change in utility when slightly
altering the means. Error bars indicate training uncertainty.

A.3.3. GAE in the symmetric NE learning

While trying to learn the symmetric NE, it was observed that the GAE-lambda has
an enormous influence on the learning outcome, too. For the cases without demand
observation, it is plausible for this to be the same issue as described above. However,
the influence is still present with demand observation (refer to Figure A.7), which we
currently cannot explain. We picked λ = 0.95 as a reasonable default value. λ = 0.9
gives a much better fit with the best response but conveys a false sense of convergence.

A.3.4. Testing the verifier

To test the functionality of our brute force verifier (see Section 3.4) we created a best-
response-learning-scenario where the agent is technically unable to learn the analytical
best response: We randomized the initial demand, parameterized the action via the
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Figure A.5.: Strategy learned in the best response learning experiment with T = 4 for
different values of the GAE-λ.

absolute price, and did not allow demand observation. Not knowing its demand, it is
impossible to set an absolute price corresponding to the optimal price indicator. As
expected, we observed that the utility loss compared to the best response is significant,
but the loss estimated by the verifier remains small, as shown in Figure A.8. Further,
it can be noticed that in the worst case, the discretization error may account for up to
10% of the utility loss.

A.3.5. Dynamic oligopoly parameter values

The parameters of the asymmetric experiments may seem arbitrary at first glance. This
is true for the orders of magnitude of the parameters, the effect of this is still to be
investigated. However, their relative positioning as an underlying thought. We want to
observe the effects of agents dropping out of the game and a monopoly being created.
To do so, we incentivized pushing agents out of the market as much as possible: We
chose an initial demand close to the cost value (c = 4, D = 5). This both ensures that it
is easy to push an agent out of the market (low relative demand potential to overcome)
and that the remaining agents profit significantly from pushing the other agent out.
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Figure A.6.: Relative utility loss with and without demand observation for the best
response learning experiment with T = 4, with and without randomized
initial demand, GAE-λ = 0.999. Error bars indicate training uncertainty.

The number of rounds was chosen high enough for the effect to happen.

A.3.6. Clamping the action space

A special case to be dealt with is the action parameterization p. Unlike in the case of
the λ parameterization, the interval of valid pricing actions depends on the state of
the game since both costs and demand are state-dependent. As a first step, actions are
clamped to the valid interval by the environment. However, with this fix comes another
problem: With the initial weights, the RL algorithms sample actions from a normal
distribution with a mean of zero and configurable standard deviation. Best results are
expected to be achieved by very small standard deviations, e.g. σ = 0.01. As a result,
sampling actions greater than costs of e.g. c = 3 is vastly unlikely, leading the price to
be clamped to the lower bound of the valid interval almost all the time. Consequently,
the agents’ actions do not affect the course of the game, and the RL algorithm cannot
learn anything.

To solve this problem, the actions sampled by the RL algorithms are shifted by the
minimum possible costs of the agent, i.e. the agent’s costs if costs are fixed or the
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Figure A.7.: Results of the symmetric NE learning experiment with T = 10 with de-
mand observation for different values of the GAE-λ. The price indicators
have been averaged over the agents. The error bars are training uncertain-
ties.
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Figure A.8.: Utility loss estimated by the analytical deviation and the brute force ver-
ifier. The action is parameterized by the price and the initial demand is
randomized. Without demand observation, it is impossible to reach the
utility of the analytical best response.
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minimum value of the probability distribution if costs are sampled. This way, the RL
algorithm’s initial actions have a non-negligible probability of being valid, avoiding
the problem described above. Still, the agent gets no additional information about the
state of the game from the shift because the amount of the shift solely depends on the
configuration of the environment, not on the state of the game. This matters since, for
instance, to play the λ parameterization in the real world, an agent would have to know
their costs and demand, which may not be realistic.

A.3.7. PPO network architecture

For all experiments, we use the same actor-critic network, as illustrated in Figure A.9.
The policy network and the value network consist of two fully connected layers with
64 neurons each, giving the network sufficient capacity to capture the dynamics of the
game. The output is a normal distribution where the mean is the output of the policy
network and the variance is a parameter, therefore the variance does not depend on the
observation.

oi = σi(s)
Linear
Selu

Linear
Selu

Linear
Selu

N (µ, σ)

σ

ai

B × O B × 64 B × 64 B × 1
µ

B × 1
σ

B × 1

Linear
Selu

Linear
Selu

Linear
Selu

vi

B × O

B × 64 B × 64 B × 1

Figure A.9.: Architecture for the PPO policy and value networks. The observations
oi have a batch size of B and consist of B scalar values each. The policy
network predicts the mean of a normal distribution of which the variance
is a parameter. The action ai is sampled from that normal distribution. The
value network predicts the value vi of the state.
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Figure A.10.: Artistic impression of the large asymmetric NE learning experiment result
(see Figure 6.5) by Moritz Barth.
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